Line 42: Line 42:
 
Proof:  
 
Proof:  
  
 
+
<math>
 
\begin{split}
 
\begin{split}
 
E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\
 
E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\
Line 51: Line 51:
 
&= \lambda_x\\
 
&= \lambda_x\\
 
\end{split}
 
\end{split}
 
+
</math>
  
 
----
 
----

Revision as of 16:11, 18 May 2017


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

August 2014, Problem 1

Problem 1 , 2

Solution 1

a) $ E\left[Y_x\right] = \lambda_x $

Lack of proof. Should mention the property of Poisson distribution to show the equivalence. See the proof in solution 2.

b) Because the rate of absorption is proportional to the number of photons and the density of the material, so the attenuation of photons obeys the following equation

$ \frac{d\lambda_x}{dx} = -\mu(x)\lambda_x $

c) Solve the differential equation in b), we have

$ \lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt} $

d) So the integral of the density, $ \int^T_0\mu(x)dx $ can be written as $ \int^T_0\mu(x)dx = -\log\left(\frac{\lambda_T}{\lambda_0}\right) $


e) $ \int^T_ \mu(x)dx \simeq -\log \left( \frac{Y_T}{Y_0} \right) $

Solution 2:

a). As we know $ P\left\{Y_x=k\right\} = \frac{e^{-\lambda_x}\lambda_x^k}{k!} $ is a Potion distribution, it is known that the expectation of a Poisson RV is $ \lambda_x $.

Proof:

$ \begin{split} E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\ &= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^k}{(k-1)!}\\ &= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^{k-1}}{(k-1)!}\lambda_x\\ &= \lambda_xe^{-\lambda_x}\sum^{+ \infty}_{k = 0} \frac{\lambda_x^k}{k!}\\ &= \lambda_xe^{-\lambda_x}e^{\lambda_x}\\ &= \lambda_x\\ \end{split} $


Back to QE CS question 1, August 2014

Back to ECE QE page:

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang