Line 1: Line 1:
 
If we were asked to compute the frequency response, one thing that we need to keep in mind is that, no matter how complexed the problem might look, we have to somehow arrange it into <math>Y(w) = H(w)X(w)</math> format. Obviously, <math>H(w)</math> is the frequency response. The following example would illustrate this:
 
If we were asked to compute the frequency response, one thing that we need to keep in mind is that, no matter how complexed the problem might look, we have to somehow arrange it into <math>Y(w) = H(w)X(w)</math> format. Obviously, <math>H(w)</math> is the frequency response. The following example would illustrate this:
 +
 +
Find the frequency response of: <math>y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]</math>

Revision as of 10:39, 24 October 2008

If we were asked to compute the frequency response, one thing that we need to keep in mind is that, no matter how complexed the problem might look, we have to somehow arrange it into $ Y(w) = H(w)X(w) $ format. Obviously, $ H(w) $ is the frequency response. The following example would illustrate this:

Find the frequency response of: $ y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n] $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood