Line 21: Line 21:
 
If <math>S = (v1,v2,...,Vn)</math> and <math>T = (w1,w2,...,Wn)</math> are bases for a vector space V, then <math>n = m</math>.
 
If <math>S = (v1,v2,...,Vn)</math> and <math>T = (w1,w2,...,Wn)</math> are bases for a vector space V, then <math>n = m</math>.
 
=='''Dimension'''==
 
=='''Dimension'''==
'''Definition:''' The '''dimension''' of a nonzero vector space V is the number of vectors in a basis for V. '''dim''' V represents the dimension of V. The dimension of the trivial vector space <math>{0}</math> is zero.\int
+
'''Definition:''' The '''dimension''' of a nonzero vector space V is the number of vectors in a basis for V. '''dim''' V represents the dimension of V. The dimension of the trivial vector space <math>{0}</math> is zero.
'''Definition:''' Let S be a set of vectors in a vector space V. A subset T of S is called a '''maximal independent subset''' of S if T is a linearly independent set of vectors that is not properly contained in any other linearly independent subset of S.
+
===Example 1===
 +
Let S be a set of vectors in a vector space V. A subset T of S is called a '''maximal independent subset''' of S if T is a linearly independent set of vectors that is not properly contained in any other linearly independent subset of S.

Revision as of 03:50, 10 December 2011


Basis and Dimension of Vector Spaces

Basis

Definition: The vectors v1, v2,..., vk in a vector space V are said to form a basis for V if (a) v1, v2,..., vk span V and (b) v1, v2,..., vk are linearly independent. Note* If v1, v2,..., vk form a basis for a vector space V, then they must be distinct and nonzero. Note** The above definition not only applies to a finite set of vectors, but also to an infinite set of vectors in a vector space.

Example 1

Let $ V = R^3 $. The vectors $ [1,0,0], [0,1,0], [0,0,1] $ form a basis for $ R^3 $, called the natural basis or standard basis, for $ R^3 $.

Example 2

The set of vectors $ {t^n,t^(n-1),...,t,1} $ forms a basis for the vector space Pn called the natural, or standard basis, for Pn.

Example 3

A vector space V is called finite-dimensional if there is a finite subset of V that is a basis for V. If there is no such finite subset of V, then V is called infinite-dimensional.

Theorem 1

If $ S = (v1,v2,...,Vn) $ is a basis for a vector space V, then every vector in V can be written in one and only one way as a linear combination of the vectors in S.

Theorem 2

Let $ S = (v1,v2,...,Vn) $ be a set of nonzero vectors in a vector space V and let $ W = span S $. Then some subset of S is a basis for W.

Theorem 3

If $ S = (v1,v2,...,Vn) $ is a basis for a vector space V and $ T = (w1,w2,...,Wr) $ is a linearly independent set of vectors in V, then $ r <= n $.

Corollary 1

If $ S = (v1,v2,...,Vn) $ and $ T = (w1,w2,...,Wn) $ are bases for a vector space V, then $ n = m $.

Dimension

Definition: The dimension of a nonzero vector space V is the number of vectors in a basis for V. dim V represents the dimension of V. The dimension of the trivial vector space $ {0} $ is zero.

Example 1

Let S be a set of vectors in a vector space V. A subset T of S is called a maximal independent subset of S if T is a linearly independent set of vectors that is not properly contained in any other linearly independent subset of S.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang