Line 6: Line 6:
 
       w(t)=y(t)<math>cosw_c</math>t  
 
       w(t)=y(t)<math>cosw_c</math>t  
 
           =x(t)<math>cos^2 w_c</math>t
 
           =x(t)<math>cos^2 w_c</math>t
 +
  Use the trig identity 
 +
      <math>cos^2 w_c</math>t=(1/2)+(1/2)<math>2cosw_c</math>t
 +
  We can rewrite as
 +
      w(t)=(1/2)x(t)=(1/2)x(t)<math>2cosw_c</math>t
 +
  In this process the demodulating signal is assumed to be synchronized in phase with the modulating signal.

Latest revision as of 18:18, 29 July 2009

Synchronous Demodulation ->

  Assume that $ w_c > w_m  $ and consider the signal: 
     y(t)=x(t)$ cosw_c t $  
  The original signal can be recovered by modulating y(t) with the same sinusoidal carrier and applying a low pass filter to the 
  result.  
     w(t)=y(t)$ cosw_c $t 
         =x(t)$ cos^2 w_c $t
  Use the trig identity   
     $ cos^2 w_c $t=(1/2)+(1/2)$ 2cosw_c $t 
  We can rewrite as 
     w(t)=(1/2)x(t)=(1/2)x(t)$ 2cosw_c $t 
  In this process the demodulating signal is assumed to be synchronized in phase with the modulating signal.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood