(New page: Claim: For all <math>a \in \mathbb{R}, A_{0} = \{ x \in \mathbb{R} : g(x) > a \}</math> is open relative to <math>\mathbb{R}</math>. Proof: Suppose <math>\exists x \in A_{0}</math>, fix ...)
 
 
Line 3: Line 3:
 
Proof:  Suppose <math>\exists x \in A_{0}</math>, fix this x.  Then <math>g(x) > a</math>, and
 
Proof:  Suppose <math>\exists x \in A_{0}</math>, fix this x.  Then <math>g(x) > a</math>, and
 
         <math>\exists</math> a set <math>E \subseteq (x,x+1)</math> such that <math>f(y) > a</math> on E, and <math>|E| > 0</math>.
 
         <math>\exists</math> a set <math>E \subseteq (x,x+1)</math> such that <math>f(y) > a</math> on E, and <math>|E| > 0</math>.
         Suppose $|E| = \gamma > 0$.
+
         Suppose <math>|E| = \gamma > 0</math>.
  
 
         I want to show that there is a small ball of
 
         I want to show that there is a small ball of
         radius <math>\delta</math> in <math> mathbb{R}</math> such that this small open ball is also in <math>A_{0}</math>.
+
         radius <math>\delta</math> in <math> \mathbb{R}</math> such that this small open ball is also in <math>A_{0}</math>.
 
         Choose <math>\delta > 0</math> like this: take <math>\delta = \gamma/2</math>.
 
         Choose <math>\delta > 0</math> like this: take <math>\delta = \gamma/2</math>.
 
         Then, <math>\forall y \in \mathbb{R}</math> such that <math>|x - y| < \delta</math>, we have
 
         Then, <math>\forall y \in \mathbb{R}</math> such that <math>|x - y| < \delta</math>, we have
 
         <math>| (y,y+1) \bigcap E | \geq \delta = \gamma/2 > 0</math>.  Therefore, <math>g(y) \geq g(x) > a.</math>
 
         <math>| (y,y+1) \bigcap E | \geq \delta = \gamma/2 > 0</math>.  Therefore, <math>g(y) \geq g(x) > a.</math>
         And thus, for all <math>y \in mathbb{R}</math> such that <math>|x-y| < \delta, y \in A_{0}</math> as well!
+
         And thus, for all <math>y \in \mathbb{R}</math> such that <math>|x-y| < \delta, y \in A_{0}</math> as well!
 
         So, $A_{0}$ is open relative to $R$, and Theorem (4.14) on page 56 tells
 
         So, $A_{0}$ is open relative to $R$, and Theorem (4.14) on page 56 tells
 
         us that g is lsc at x=0 (i.e. if a = g(0)).
 
         us that g is lsc at x=0 (i.e. if a = g(0)).

Latest revision as of 10:44, 29 July 2008

Claim: For all $ a \in \mathbb{R}, A_{0} = \{ x \in \mathbb{R} : g(x) > a \} $ is open relative to $ \mathbb{R} $.

Proof: Suppose $ \exists x \in A_{0} $, fix this x. Then $ g(x) > a $, and

       $ \exists $ a set $ E \subseteq (x,x+1) $ such that $ f(y) > a $ on E, and $ |E| > 0 $.
       Suppose $ |E| = \gamma > 0 $.
       I want to show that there is a small ball of
       radius $ \delta $ in $  \mathbb{R} $ such that this small open ball is also in $ A_{0} $.
       Choose $ \delta > 0 $ like this: take $ \delta = \gamma/2 $.
       Then, $ \forall y \in \mathbb{R} $ such that $ |x - y| < \delta $, we have
       $ | (y,y+1) \bigcap E | \geq \delta = \gamma/2 > 0 $.  Therefore, $ g(y) \geq g(x) > a. $
       And thus, for all $ y \in \mathbb{R} $ such that $ |x-y| < \delta, y \in A_{0} $ as well!
       So, $A_{0}$ is open relative to $R$, and Theorem (4.14) on page 56 tells
       us that g is lsc at x=0 (i.e. if a = g(0)).

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett