Line 35: Line 35:
 
This is because  
 
This is because  
  
<math> X(k\2pi /N) = \sum_{n =-\infty}^{\infty} x[n]e^{-j2\pi kn/N}</math>
+
<math> X(k2\pi /N) = \sum_{n =-\infty}^{\infty} x[n]e^{-j2\pi kn/N}</math>
 
            
 
            
 
<math> = . . . + \sum_{n = -N}^{-1} x[n]e^{-j2\pi kn/N} + \sum_{n = 0}^{N-1} x[n]e^{-j2/pi kn/N}</math>
 
<math> = . . . + \sum_{n = -N}^{-1} x[n]e^{-j2\pi kn/N} + \sum_{n = 0}^{N-1} x[n]e^{-j2/pi kn/N}</math>
Line 41: Line 41:
 
<math> = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x[n]e^{-j2\pi kn/N}</math>
 
<math> = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x[n]e^{-j2\pi kn/N}</math>
 
Let m=n-lN
 
Let m=n-lN
<math>X(k2
+
<math> X(k2\pi /N) = \sum_{l=-\infty}^{\infty} \sum_{m=0}^{N-1} x[m+lN]e^{-j\2pi k(m+lN)/N}</math>
 +
 
 +
        <math> = \sum_{l=-\infty}^{\infty} \sum_{m=0}^{N-1} x[m+lN]e^{-j\2pi m/N}</math>

Revision as of 22:30, 22 September 2009

Discrete Fourier Transform

definition

Let X[n] be a DT signal with period N

DFT

$ X [k] = \sum_{k=0}^{N-1} x[n]e^{-j2\pi kn/N} $

IDFT

$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k]e^{j2\pi kn/N} $


Derivation

Digital signals are 1) finite duration 2)discrete

want F.T. discrete and finite duration

Idea : discretize (ie. sample) the F.T.

$ X(w) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn}----sampling---> X(k2\pi /N) = \sum x[n]e^{-j2\pi nk/N} $

note : if X(w) band limited can reconstruct X(w) if N big enough.

Oberve :

$ X(k2\pi /N) = \sum_{n=0}^{N-1} x_{p}[n]e^{-j2\pi kn/N} $, where $ x_{p}[n] = \sum_{-\infty}^{\infty} x[n-lN] $ is periodic with N.

This is because

$ X(k2\pi /N) = \sum_{n =-\infty}^{\infty} x[n]e^{-j2\pi kn/N} $

$ = . . . + \sum_{n = -N}^{-1} x[n]e^{-j2\pi kn/N} + \sum_{n = 0}^{N-1} x[n]e^{-j2/pi kn/N} $

$ = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x[n]e^{-j2\pi kn/N} $ Let m=n-lN $ X(k2\pi /N) = \sum_{l=-\infty}^{\infty} \sum_{m=0}^{N-1} x[m+lN]e^{-j\2pi k(m+lN)/N} $

        $  = \sum_{l=-\infty}^{\infty} \sum_{m=0}^{N-1} x[m+lN]e^{-j\2pi m/N} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett