(Removing all content from page)
Line 1: Line 1:
 +
'''Given:''' <math>f \in L^p, p \geq 1, \int_0^1 f(y)sin(xy) dy = 0</math>
  
 +
'''Show:''' f=0 a.e.
 +
 +
'''Proof:''' Assume wlog that f(0)=0, and extend to the entire line: <math>f(x) = -f(-x), x\in [-1,0), f(x)=0, |x|>1</math>. 
 +
 +
We recall some facts about Fourier transfroms:
 +
 +
We proved on a HW that <math>f, g \in L^1 \Rightarrow \widehat{f*g} = \hat{f}\hat{g}</math>.
 +
 +
This implies that <math>\hat{f} = 0 \Rightarrow f=0</math> a.e.
 +
 +
Let <math>g(x) = \sin(x)\chi_{[-1,1]}</math>.  We observe that <math>f*g = 0</math>:
 +
 +
<math>(f*g)(x) = \int_{-1}^1 f(t)\sin(x-t)dt = \int_{-1}^1 f(t)[\sin(x)\cos(t) - \cos(x)\sin(t)] = 0 \ \forall x</math>,
 +
 +
since <math>\int_{-1}^1 f(t)\cos(t) = 0</math> since <math>f(t)\cos(t)</math> is odd, and
 +
 +
<math>\int_{-1}^1 f(t)\sin(t) dt = 2\int_{0}^1 f(t)\sin(t) dt = 0</math> by assumption.
 +
 +
This implies that <math>\hat{f}\hat{g} = 0 \Rightarrow \hat{f} = 0 \Rightarrow f=0</math> a.e.

Revision as of 10:47, 16 July 2008

Given: $ f \in L^p, p \geq 1, \int_0^1 f(y)sin(xy) dy = 0 $

Show: f=0 a.e.

Proof: Assume wlog that f(0)=0, and extend to the entire line: $ f(x) = -f(-x), x\in [-1,0), f(x)=0, |x|>1 $.

We recall some facts about Fourier transfroms:

We proved on a HW that $ f, g \in L^1 \Rightarrow \widehat{f*g} = \hat{f}\hat{g} $.

This implies that $ \hat{f} = 0 \Rightarrow f=0 $ a.e.

Let $ g(x) = \sin(x)\chi_{[-1,1]} $. We observe that $ f*g = 0 $:

$ (f*g)(x) = \int_{-1}^1 f(t)\sin(x-t)dt = \int_{-1}^1 f(t)[\sin(x)\cos(t) - \cos(x)\sin(t)] = 0 \ \forall x $,

since $ \int_{-1}^1 f(t)\cos(t) = 0 $ since $ f(t)\cos(t) $ is odd, and

$ \int_{-1}^1 f(t)\sin(t) dt = 2\int_{0}^1 f(t)\sin(t) dt = 0 $ by assumption.

This implies that $ \hat{f}\hat{g} = 0 \Rightarrow \hat{f} = 0 \Rightarrow f=0 $ a.e.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett