m
 
(6 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
  
'''Proof'''
+
'''PROOF'''
In progress
+
  
Suppose not.  Then for some <math>x_0 \in I</math>, then <math>|f(x_0)| \neq 0</math>.  Choose <math>x_0</math> such that <math>|f|</math> attains its maximum; let's call the maximum value of <math>|f|</math> on I <math>\varepsilon</math>.  WLOG we assume <math>f(x_0) > 0</math>, for if not, then <math>f < 0</math> on <math>I</math>, and carry out the following argument, replacing <math>f</math> with <math>-f</math>.
 
  
By continuity of <math>f</math>, <math>\exist \delta > 0</math> such that on <math>U = (x_0 - \delta, x_0 + \delta)</math>, <math>f > \frac{\varepsilon}{2}</math>.  Now, we have 2 cases:
+
So, since <math>|f|</math> is integrable, we can use Weierstrauss' Approximation theorem as follows.  Since
 +
<math>\int_{I} x^n f(x) \ dx = 0</math> for any non-negative n, then for any polynomial P, <math>\int_{I} P(x) f(x) \ dx = 0</math>.  By Weierstrauss' Approximation theorem, we know that we may approach f with polynomials, hence taking a sequence of polynomials <math>P_n</math> approaching f, then <math>\int_{I} \lim_{n} P_n(x) f(x) dx \leq \lim\inf \int_{I} P_n(x) f(x) dx</math> by Fatou's Lemma, hence
 +
<math>\int_{I} (f(x))^2 dx \leq 0</math>, hence <math>f^2</math> is 0 almost everywhere, hence so too is f.
  
<math>x_0 \neq 0</math>:
 
 
<math>\int_{I} |f| x^n dx \geq \int_{U} |f| x^n dx > \int_{U} \frac{\varepsilon}{2} x^n = \frac{\varepsilon}{2} \left(\frac{(x_0 + \delta)^{n+1}}{n+1} - \frac{(x_0 - \delta)^{n+1}}{n+1} \right) \neq 0</math>.  (Note we can only say it's non-zero, because if n is even and <math>x_0</math> is positive, then the integral is positive, but if n is odd and <math>x_0</math> is negative, then the integral is negative.  If <math>x_0 \neq 0</math> then <math>\frac{(x_0 + \delta)^{n+1}}{n+1} \neq \frac{(x_0 - \delta)^{n+1}}{n+1}</math>, so the above is non-zero.)
 
 
<math>x_0 = 0</math>:
 
 
sub-case: <math>n</math> is odd.  Then <math>\frac{(x_0 + \delta)^{n+1}}{n+1} = -\frac{(x_0 - \delta)^{n+1}}{n+1}</math>, and the conclusion remains unchanged.
 
 
sub-case: <math>n</math> is even.  Then <math>\frac{(x_0 + \delta)^{n+1}}{n+1} = \frac{(x_0 - \delta)^{n+1}}{n+1}</math>, but we can alter our argument as follows:
 
 
<math>\int_{I} |f| x^n dx \geq \int_{U} |f| x^n dx > \int_{(0, \delta)} \frac{\varepsilon}{2} x^n dx = \frac{\varepsilon \delta^{n+1}}{n+1} \neq 0</math>
 
 
In either case, we get a contradiction, since we only assumed that <math>|f| > 0</math> at a point <math>x_0 \in I</math>, and so we see that <math>|f| = 0</math> on <math>I</math>, hence <math>f = 0</math> on <math>I</math>
 
  
 
Written by Nicholas Stull
 
Written by Nicholas Stull

Latest revision as of 06:54, 6 July 2009

4.7

Let $ f $ be a continuous function on $ I = [-1, 1] $ with the property that $ \int_{I} x^n f(x) \ dx = 0 $ for $ n = 0, 1, ... $. Show that $ f $ is identically 0.


PROOF


So, since $ |f| $ is integrable, we can use Weierstrauss' Approximation theorem as follows. Since $ \int_{I} x^n f(x) \ dx = 0 $ for any non-negative n, then for any polynomial P, $ \int_{I} P(x) f(x) \ dx = 0 $. By Weierstrauss' Approximation theorem, we know that we may approach f with polynomials, hence taking a sequence of polynomials $ P_n $ approaching f, then $ \int_{I} \lim_{n} P_n(x) f(x) dx \leq \lim\inf \int_{I} P_n(x) f(x) dx $ by Fatou's Lemma, hence $ \int_{I} (f(x))^2 dx \leq 0 $, hence $ f^2 $ is 0 almost everywhere, hence so too is f.


Written by Nicholas Stull

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang