m
m
Line 13: Line 13:
 
<math>x_0 \neq 0</math>:
 
<math>x_0 \neq 0</math>:
  
<math>\int_{I} |f| x^n dx \geq \int_{U} |f| x^n dx > \int_{U} \frac{\varepsilon}{2} x^n = \frac{\varepsilon}{2} \left(\frac{(x_0 + \delta)^{n+1}}{n+1} - \frac{(x_0 - \delta)^{n+1}}{n+1} \right) \neq 0</math>.  (Note we can only say it's non-zero, because if n is even and x_0 is positive, then the integral is positive, but if n is odd and x_0 is negative, then the integral is negative.  If <math>x_0 \neq 0</math> then <math>\frac{(x_0 + \delta)^{n+1}}{n+1} \neq \frac{(x_0 - \delta)^{n+1}}{n+1}</math>
+
<math>\int_{I} |f| x^n dx \geq \int_{U} |f| x^n dx > \int_{U} \frac{\varepsilon}{2} x^n = \frac{\varepsilon}{2} \left(\frac{(x_0 + \delta)^{n+1}}{n+1} - \frac{(x_0 - \delta)^{n+1}}{n+1} \right) \neq 0</math>.  (Note we can only say it's non-zero, because if n is even and <math>x_0</math> is positive, then the integral is positive, but if n is odd and <math>x_0</math> is negative, then the integral is negative.  If <math>x_0 \neq 0</math> then <math>\frac{(x_0 + \delta)^{n+1}}{n+1} \neq \frac{(x_0 - \delta)^{n+1}}{n+1}</math>, so the above is non-zero.)
  
 
<math>x_0 = 0</math>:
 
<math>x_0 = 0</math>:

Revision as of 18:33, 5 July 2009

4.7

Let $ f $ be a continuous function on $ I = [-1, 1] $ with the property that $ \int_{I} x^n f(x) \ dx = 0 $ for $ n = 0, 1, ... $. Show that $ f $ is identically 0.


Proof In progress

Suppose not. Then for some $ x_0 \in I $, then $ |f(x_0)| \neq 0 $. Choose $ x_0 $ such that $ |f| $ attains its maximum; let's call the maximum value of $ |f| $ on I $ \varepsilon $. WLOG we assume $ f(x_0) > 0 $, for if not, then $ f < 0 $ on $ I $, and carry out the following argument, replacing $ f $ with $ -f $.

By continuity of $ f $, $ \exist \delta > 0 $ such that on $ U = (x_0 - \delta, x_0 + \delta) $, $ f > \frac{\varepsilon}{2} $. Now, we have 2 cases:

$ x_0 \neq 0 $:

$ \int_{I} |f| x^n dx \geq \int_{U} |f| x^n dx > \int_{U} \frac{\varepsilon}{2} x^n = \frac{\varepsilon}{2} \left(\frac{(x_0 + \delta)^{n+1}}{n+1} - \frac{(x_0 - \delta)^{n+1}}{n+1} \right) \neq 0 $. (Note we can only say it's non-zero, because if n is even and $ x_0 $ is positive, then the integral is positive, but if n is odd and $ x_0 $ is negative, then the integral is negative. If $ x_0 \neq 0 $ then $ \frac{(x_0 + \delta)^{n+1}}{n+1} \neq \frac{(x_0 - \delta)^{n+1}}{n+1} $, so the above is non-zero.)

$ x_0 = 0 $:

sub-case: $ n $ is odd. Then $ \frac{(x_0 + \delta)^{n+1}}{n+1} = -\frac{(x_0 - \delta)^{n+1}}{n+1} $, and the conclusion remains unchanged.

sub-case: $ n $ is even. Then $ \frac{(x_0 + \delta)^{n+1}}{n+1} = \frac{(x_0 - \delta)^{n+1}}{n+1} $, but we can alter our argument as follows:

$ \int_{I} |f| x^n dx \geq \int_{U} |f| x^n dx > \int_{(0, \delta)} \frac{\varepsilon}{2} x^n dx = \frac{\varepsilon \delta^{n+1}}{n+1} \neq 0 $

In either case, we get a contradiction, since we only assumed that $ |f| > 0 $ at a point $ x_0 \in I $, and so we see that $ |f| = 0 $ on $ I $, hence $ f = 0 $ on $ I $

Written by Nicholas Stull

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva