(New page: An important part to figuring out part b is to understand why P(x=k) is 1/n: P(x = 1) = 1/n P(x = 2) = (n-1)/n * 1/(n-1) P(x = 3) = (n-1)/n * (n-2)/(n-1) * 1/n P(x = k) = (n-1)/n * ... * ...)
 
Line 2: Line 2:
  
 
P(x = 1) = 1/n
 
P(x = 1) = 1/n
 +
 
P(x = 2) = (n-1)/n * 1/(n-1)
 
P(x = 2) = (n-1)/n * 1/(n-1)
 +
 
P(x = 3) = (n-1)/n * (n-2)/(n-1) * 1/n
 
P(x = 3) = (n-1)/n * (n-2)/(n-1) * 1/n
 +
 
P(x = k) = (n-1)/n * ... * (n - (k-1))/(n-k) * 1/(n-(k-1))
 
P(x = k) = (n-1)/n * ... * (n - (k-1))/(n-k) * 1/(n-(k-1))
 
         = [(n-1)*...*(n-k-1)] / [n*...*(n-k-1)]
 
         = [(n-1)*...*(n-k-1)] / [n*...*(n-k-1)]

Revision as of 07:36, 23 September 2008

An important part to figuring out part b is to understand why P(x=k) is 1/n:

P(x = 1) = 1/n

P(x = 2) = (n-1)/n * 1/(n-1)

P(x = 3) = (n-1)/n * (n-2)/(n-1) * 1/n

P(x = k) = (n-1)/n * ... * (n - (k-1))/(n-k) * 1/(n-(k-1))

        = [(n-1)*...*(n-k-1)] / [n*...*(n-k-1)]
        = [(n-1)!/(n-k)!]/[n!/(n-k)!]
        = [ (n-1)!/ (n!)]
        = 1/n

You can then use this probability while solving the rest of 2b.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett