Line 2: Line 2:
  
  
<math>P[X is Even]= \sum\limits_{k=0,even}^N P[x=k]= \sum\limits_{k=0}^N {N \choose k} P^k(1-P)^{N-k}[1+(-1)^k]</math>
+
<math>P[X is Even]= \sum\limits_{k=0,even}^N P[x=k]= \sum\limits_{k=0}^N {N \choose k} P^k(1-P)^{N-k}[1+(-1)^k]</math> Eq. 1
  
 
Next we must expand <math>(x+y)^n + (x-y)^n</math> using the binomial thereom:
 
Next we must expand <math>(x+y)^n + (x-y)^n</math> using the binomial thereom:
  
<math>(x+y)^n + (x-y)^n = \sum\limits_{k=0}^N {N \choose k} y^kx^{N-k} + \sum\limits_{k=0}^N {N \choose k} (-y)^kx^{N-k}</math>
+
<math>(x+y)^n + (x-y)^n = \sum\limits_{k=0}^N {N \choose k} y^kx^{N-k} + \sum\limits_{k=0}^N {N \choose k} (-y)^kx^{N-k}</math> Eq. 2
  
 
This simplifies to:
 
This simplifies to:
  
<math>\sum\limits_{k=0}^N {N \choose k} (x)^{N-k}y^k[1+(-1)^k] </math>
+
<math>\sum\limits_{k=0}^N {N \choose k} (x)^{N-k}y^k[1+(-1)^k] </math> Eq. 3
  
If you compare P{X is Even} with the binomial expansion just above then you can derive a condensed equation in the form of <math>(x+y)^n + (x-y)^n</math> where <math>x = 1-P</math> and <math>y=P</math> :
+
If you compare equations 1 and 3 then you can derive a condensed equation in the form of <math>(x+y)^n + (x-y)^n</math> where <math>x = 1-P</math> and <math>y=P</math> :
  
<math> ((1-P)+P)^n + ((1-P)-P)^n = 1^n + (1-2P)^n </math>
+
<math> ((1-P)+P)^n + ((1-P)-P)^n = 1^n + (1-2P)^n </math> Eq. 4
 +
 
 +
Note that even though the hint gives away x = 1-P and y = P, we use the binomial theorem to prove the correlation between equations 1 and 3.

Revision as of 11:52, 23 September 2008

The first step for this problem is to map out what the probability that x is even would be:


$ P[X is Even]= \sum\limits_{k=0,even}^N P[x=k]= \sum\limits_{k=0}^N {N \choose k} P^k(1-P)^{N-k}[1+(-1)^k] $ Eq. 1

Next we must expand $ (x+y)^n + (x-y)^n $ using the binomial thereom:

$ (x+y)^n + (x-y)^n = \sum\limits_{k=0}^N {N \choose k} y^kx^{N-k} + \sum\limits_{k=0}^N {N \choose k} (-y)^kx^{N-k} $ Eq. 2

This simplifies to:

$ \sum\limits_{k=0}^N {N \choose k} (x)^{N-k}y^k[1+(-1)^k] $ Eq. 3

If you compare equations 1 and 3 then you can derive a condensed equation in the form of $ (x+y)^n + (x-y)^n $ where $ x = 1-P $ and $ y=P $ :

$ ((1-P)+P)^n + ((1-P)-P)^n = 1^n + (1-2P)^n $ Eq. 4

Note that even though the hint gives away x = 1-P and y = P, we use the binomial theorem to prove the correlation between equations 1 and 3.

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010