Line 12: Line 12:
 
<math>\sum\limits_{k=0}^N {N \choose k} (x)^{N-k}y^k[1+(-1)^k] </math>
 
<math>\sum\limits_{k=0}^N {N \choose k} (x)^{N-k}y^k[1+(-1)^k] </math>
  
If you compare P{X is Even} with the binomial expansion just above then you can derive a condensed equation in the form of <math>(x+y)^n + (x-y)^n</math> where <math>x = 1-P</math> and <math>y=P</math>:
+
If you compare P{X is Even} with the binomial expansion just above then you can derive a condensed equation in the form of <math>(x+y)^n + (x-y)^n</math> where <math>x = 1-P</math> and <math>y=P</math> :
  
 
<math> ((1-P)+P)^n + ((1-P)-P)^n = 1^n + (1-2P)^n </math>
 
<math> ((1-P)+P)^n + ((1-P)-P)^n = 1^n + (1-2P)^n </math>

Revision as of 11:40, 23 September 2008

The first step for this problem is to map out what the probability that x is even would be:


$ P[X is Even]= \sum\limits_{k=0,even}^N P[x=k]= \sum\limits_{k=0}^N {N \choose k} P^k(1-P)^{N-k}[1+(-1)^k] $

Next we must expand $ (x+y)^n + (x-y)^n $ using the binomial thereom:

$ (x+y)^n + (x-y)^n = \sum\limits_{k=0}^N {N \choose k} y^kx^{N-k} + \sum\limits_{k=0}^N {N \choose k} (-y)^kx^{N-k} $

This simplifies to:

$ \sum\limits_{k=0}^N {N \choose k} (x)^{N-k}y^k[1+(-1)^k] $

If you compare P{X is Even} with the binomial expansion just above then you can derive a condensed equation in the form of $ (x+y)^n + (x-y)^n $ where $ x = 1-P $ and $ y=P $ :

$ ((1-P)+P)^n + ((1-P)-P)^n = 1^n + (1-2P)^n $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett