(New page: The first step for this problem is to map out what the probability that x is even: <math>P{X is Even}= ∑_█(k=0@k even)^N▒P[x=k] = ∑_█(k=0@k even)^n▒〖(n¦k) x^k a^(n-k) 〗</...)
 
Line 1: Line 1:
The first step for this problem is to map out what the probability that x is even:
+
The first step for this problem is to map out what the probability that x is even would be:
  
<math>P{X is Even}= ∑_█(k=0@k even)^N▒P[x=k] = ∑_█(k=0@k even)^n▒〖(n¦k) x^k a^(n-k) 〗</math>
 
  
Next we must expand <math>(x+y)^n 〖+ (x-y)^n</math> using the binomial thereom:
+
<math>P[X is Even]= \sum\limits_{k=0,even}^N P[x=k]= \sum\limits_{k=0}^N {N \choose k} P^k(1-P)^{N-k}[1+(-1)^k]</math>
  
<math>(x+y)^n + (x-y)^n=∑_(k=0)^n▒〖(n¦k) y^k x^(n-k+ ∑_(k=0)^n▒〖(n¦k) (-y)^k x^(n-k) 〗〗</math>
+
Next we must expand <math>(x+y)^n + (x-y)^n</math> using the binomial thereom:
 +
 
 +
<math>(x+y)^n + (x-y)^n = \sum\limits_{k=0}^N {N \choose k} y^kx^{N-k} + \sum\limits_{k=0}^N {N \choose k} (-y)^kx^{N-k}</math>
 +
 
 +
This simplifies to:
 +
 
 +
<math>\sum\limits_{k=0}^N {N \choose k} (x)^{N-k}y^k[1+(-1)^k] </math>
 +
 
 +
If you compare P{X is Even} with the binomial expansion just above then you can derive a condensed equation in the form of <math>(x+y)^n + (x-y)^n</math> where <math>x = 1-P</math> and <math>y=P</math>:
 +
 
 +
<math> ((1-P)+P)^n + ((1-P)-P)^n = 1^n + (1-2P)^n </math>

Revision as of 11:40, 23 September 2008

The first step for this problem is to map out what the probability that x is even would be:


$ P[X is Even]= \sum\limits_{k=0,even}^N P[x=k]= \sum\limits_{k=0}^N {N \choose k} P^k(1-P)^{N-k}[1+(-1)^k] $

Next we must expand $ (x+y)^n + (x-y)^n $ using the binomial thereom:

$ (x+y)^n + (x-y)^n = \sum\limits_{k=0}^N {N \choose k} y^kx^{N-k} + \sum\limits_{k=0}^N {N \choose k} (-y)^kx^{N-k} $

This simplifies to:

$ \sum\limits_{k=0}^N {N \choose k} (x)^{N-k}y^k[1+(-1)^k] $

If you compare P{X is Even} with the binomial expansion just above then you can derive a condensed equation in the form of $ (x+y)^n + (x-y)^n $ where $ x = 1-P $ and $ y=P $:

$ ((1-P)+P)^n + ((1-P)-P)^n = 1^n + (1-2P)^n $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett