(New page: Here's what I did, and it seemed to work. Let me know if I forgot anything. Simply expand the original <math>Pr(x) = \left( \begin{array}{ccc} n \\ x \end{array} \right)p^{x}(1-p)^{n-x}<...)
 
m (4.2a Eric Zarowny moved to 4.1a Eric Zarowny: Improperly named originally)
 
(2 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
Simply expand the original <math>Pr(x) = \left( \begin{array}{ccc} n \\ x \end{array} \right)p^{x}(1-p)^{n-x}</math>.
 
Simply expand the original <math>Pr(x) = \left( \begin{array}{ccc} n \\ x \end{array} \right)p^{x}(1-p)^{n-x}</math>.
  
Now, see if substituting n-x for x results in the same answer.
+
Now, see if substituting n-x for x and expanding results in the same answer.
 +
 
 +
 
 +
 
 +
Don't forget that:  <math>
 +
  {n \choose k} = \frac{n \cdot (n-1) \cdots (n-k+1)}
 +
  {k \cdot (k-1) \cdots 1} = \frac{n!}{k!(n-k)!} \quad \mbox{if}\ 0\leq k\leq n \qquad </math>
 +
 
 +
 
 +
//comment Beau Morrison
 +
 
 +
Also remember to prove that:
 +
 
 +
<math>{n \choose k} = {n \choose n-k}</math>
 +
 
 +
when solving the equality.

Latest revision as of 07:41, 15 October 2008

Here's what I did, and it seemed to work. Let me know if I forgot anything.

Simply expand the original $ Pr(x) = \left( \begin{array}{ccc} n \\ x \end{array} \right)p^{x}(1-p)^{n-x} $.

Now, see if substituting n-x for x and expanding results in the same answer.


Don't forget that: $ {n \choose k} = \frac{n \cdot (n-1) \cdots (n-k+1)} {k \cdot (k-1) \cdots 1} = \frac{n!}{k!(n-k)!} \quad \mbox{if}\ 0\leq k\leq n \qquad $


//comment Beau Morrison

Also remember to prove that:

$ {n \choose k} = {n \choose n-k} $

when solving the equality.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang