Line 13: Line 13:
 
:<math>\alpha y_1(t) + \beta y_2(t) = F \left \{ \alpha x_1(t) + \beta x_2(t) \right \} </math>
 
:<math>\alpha y_1(t) + \beta y_2(t) = F \left \{ \alpha x_1(t) + \beta x_2(t) \right \} </math>
 
for any scalar complex values <math>\alpha \,</math> and <math>\beta \,</math>.
 
for any scalar complex values <math>\alpha \,</math> and <math>\beta \,</math>.
 +
 +
That is to say that in a linear system the inputs can be shifted and/or scaled and the outputs will reflect those exact changes.
 +
 +
''Example:''
 +
:<math>y_1(t) = F \left \{ x_1(t) \right \} </math> & <math>\alpha = 4 \,</math> , <math>\beta = 5 \,</math>.
 +
 +
:<math>y_2(t) = F \left \{ x_2(t) \right \} </math>

Revision as of 14:25, 19 September 2008

Part A: Understanding System's Properties

Linear System

Given any two inputs

$ x_1(t) \, $
$ x_2(t) \, $

as well as their respective outputs

$ y_1(t) = F \left \{ x_1(t) \right \} $
$ y_2(t) = F \left \{ x_2(t) \right \} $

then to be a linear system,

$ \alpha y_1(t) + \beta y_2(t) = F \left \{ \alpha x_1(t) + \beta x_2(t) \right \} $

for any scalar complex values $ \alpha \, $ and $ \beta \, $.

That is to say that in a linear system the inputs can be shifted and/or scaled and the outputs will reflect those exact changes.

Example:

$ y_1(t) = F \left \{ x_1(t) \right \} $ & $ \alpha = 4 \, $ , $ \beta = 5 \, $.
$ y_2(t) = F \left \{ x_2(t) \right \} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang