(New page: A B P(A=1) = p P(B=1) = p P(A=0) = 1-p P(B=0) = 1-p P(A=1,C=1) = P(A=1) . P(C=1) = p.P(A=1,B=0) = p^2.(1-p) (1) P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p) (2) Since...)
 
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
     
 +
 +
 +
 
         A B
 
         A B
 
 
P(A=1) = p P(B=1) = p
 
P(A=0) = 1-p P(B=0) = 1-p
 
 
 
P(A=1,C=1) = P(A=1) . P(C=1) = p.P(A=1,B=0) = p^2.(1-p) (1)
+
        P(A=1) = p P(B=1) = p
P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p) (2)
+
 +
        P(A=0) = 1-p P(B=0) = 1-p
 +
 +
 +
        P(A=1,C=1) = P(A=1) . P(C=1) = p.{P(A=1,B=0)+P(A=0,B=1)} = 2.p^2.(1-p) (1)
 +
 +
        P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p)                 (2)
 +
       
 +
Since, (1) & (2) are not equal to each other, A & C are not independent of each other when bits are biased.
 +
 +
 
 +
                            "OR"       
 +
 
 +
        P(A=0,C=0) = P(A=0) . P(C=0) = (1-p).{P(A=1,B=1)+P(A=0,B=0)} = (p^2 + (1-p)^2).(1-p) (3)
 +
 +
        P(A=0,B=0) = P(A=1) . P(B=0) = (1-p).(1-p)                 (4)
 +
         
 +
Again, since (3) & (4) are not equal to each other, A & C are not independent of each other when bits are biased.
  
Since, (1) & (2) are not equal to each other, A & C are
+
        Hence, it is proved.
independent of each other when bits are biased.
+

Latest revision as of 15:42, 16 September 2008



       A		B		


       P(A=1) = p	P(B=1) = p
       P(A=0) = 1-p	P(B=0) = 1-p			


       P(A=1,C=1) = P(A=1) . P(C=1) = p.{P(A=1,B=0)+P(A=0,B=1)} = 2.p^2.(1-p)		(1)
       P(A=1,B=0) = P(A=1) . P(B=0) = p.(1-p)		                 		(2)
       

Since, (1) & (2) are not equal to each other, A & C are not independent of each other when bits are biased.


                            "OR"        
       P(A=0,C=0) = P(A=0) . P(C=0) = (1-p).{P(A=1,B=1)+P(A=0,B=0)} = (p^2 + (1-p)^2).(1-p)	(3)
       P(A=0,B=0) = P(A=1) . P(B=0) = (1-p).(1-p)		                 		(4)
         

Again, since (3) & (4) are not equal to each other, A & C are not independent of each other when bits are biased.

       Hence, it is proved.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood