Line 24: Line 24:
 
x(t) =
 
x(t) =
 
  \begin{cases}
 
  \begin{cases}
   0, & \text{if}\ a=1 \\
+
   3, & \text{if}\ a=1 \\
   1, & \text{otherwise}
+
   0, & \text{otherwise}
 
  \end{cases}
 
  \end{cases}
  
Line 41: Line 41:
 
& = \int_a^{-\infty} jzdhfbvzjhvz dt \\
 
& = \int_a^{-\infty} jzdhfbvzjhvz dt \\
 
& = \sum_{k=0}^{-\infty} kzdjfgdzjkfg \\
 
& = \sum_{k=0}^{-\infty} kzdjfgdzjkfg \\
x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8}
+
x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\
 +
x(t) =
 +
\begin{cases}
 +
  3, & \text{if}\ a=1 \\
 +
  0, & \text{otherwise}
 +
\end{cases}
 +
x(t) =
 +
\begin{cases}
 +
  3, & \text{if}\ a=1 \\
 +
  0, & \text{otherwise}
 +
\end{cases}
  
 
\end{align}
 
\end{align}

Revision as of 21:00, 25 April 2019


Fourier Series Coefficients

A project by Kalyan Mada



Introduction

I am going to compute some fourier series coefficients.


CT signals

$ \begin{align} \bar x(t) = sin(6 \pi t), \omega_{o} = 6\pi \\ x(t) = 2 + cos(6 \pi t) - \frac{1}{2} sin(3 \pi t), \omega_{o} = 3\pi \\ x(t) = cos(\frac{2\pi}{10}t), \omega_{o} = \frac{\pi}{10} \\\ x(t) = \begin{cases} 3, & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases} \end{align} $


DT signals

$ \begin{align} f(x) &= \oint_S g(x) dx \\ &= \int_a^b g(x) dx \\ &= \frac{\mu_0}{2 \pi a \cdot b}\\ & = \int_a^{-\infty} jzdhfbvzjhvz dt \\ & = \sum_{k=0}^{-\infty} kzdjfgdzjkfg \\ x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\ x(t) = \begin{cases} 3, & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases} x(t) = \begin{cases} 3, & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases} \end{align} $



Questions and comments

If you have any questions, comments, etc. please post them here.


[to 2019 Spring ECE 301 Boutin]


Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn