Line 27: Line 27:
 
=\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi\sigma^2}}e^{-\dfrac{1}{2\sigma^2}(x-\mu)^2}dx  
 
=\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi\sigma^2}}e^{-\dfrac{1}{2\sigma^2}(x-\mu)^2}dx  
 
=\dfrac{1}{\sigma}\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{(\dfrac{x-\mu}{\sigma})^2}{2}}dx \\
 
=\dfrac{1}{\sigma}\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{(\dfrac{x-\mu}{\sigma})^2}{2}}dx \\
=</math>
+
=\dfrac{1}{\sigma}\int_{-\infty}^{\dfrac{r-\mu}{\sigma}} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{z^2}{2}}dz=\dfrac{1}{\sigma}\Phi(\dfrac{r-\mu}{\sigma})</math><br>
 +
<math>\sigma^2=c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)</math>  <math>\mu=(c_1-c_2)\mu_x</math><br>
 +
<math>P(Y(t)<=r)=\dfrac{1}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}}\Phi(\dfrac{r-(c_1-c_2)\mu_x}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}})</math><br>
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 09:21, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 4


Solution

Since $ X(t) $ is a wide sense Gaussian Process $ \Rightarrow X(t) $ is SSS.
$ Y(t) $ is a combination of two Gaussian distribution.
$ R_{x(t)x(t+\tau)}=R_{xx}(\tau) $
Such that
$ Y(t)=c_1X(t)-c_2X(t-\tau) $ $ \sim N((c_1-c_2)\mu_x,(c_1^2+c_2^2)\sigma_x^2-2c_1c_2R_{xx}(\tau)) $
$ \Rightarrow P(Y(t)<=\gamma) =\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi\sigma^2}}e^{-\dfrac{1}{2\sigma^2}(x-\mu)^2}dx =\dfrac{1}{\sigma}\int_{-\infty}^{r} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{(\dfrac{x-\mu}{\sigma})^2}{2}}dx \\ =\dfrac{1}{\sigma}\int_{-\infty}^{\dfrac{r-\mu}{\sigma}} \dfrac{1}{\sqrt{2\pi}}e^{-\dfrac{z^2}{2}}dz=\dfrac{1}{\sigma}\Phi(\dfrac{r-\mu}{\sigma}) $
$ \sigma^2=c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau) $ $ \mu=(c_1-c_2)\mu_x $
$ P(Y(t)<=r)=\dfrac{1}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}}\Phi(\dfrac{r-(c_1-c_2)\mu_x}{\sqrt{c_1^2\sigma_x^2+c_2^2\sigma_x^2-2c_1c_2R_{xx}(\tau)}}) $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal