Revision as of 23:52, 18 February 2019 by Wan82 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 3


Solution

a)
Because $ X, Y $ are independent jointly distribute Poisson random variable.
$ P_{X+Y}(x,y)=P_X(x)\dot P_Y(y) $
Such that $ P_Z(z)=\sum_{x=0}^{z} e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!} =\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)} =e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!} $
b)
when $ x>n $ $ P_X(x)=0 $
when $ 0<=x<=n $
$ P_{X|Z}(x|n) = P_{X,Y}(X=x,Y=n-x|Z=n)=\dfrac{e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{n-x}}{(n-x)!}}{e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^n}{n!}} $
$ =\dfrac{n!}{x!(n-x)!} $$ \dfrac{\lambda^x\mu^{n-x}}{(\lambda+\mu)^n}=\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x(\dfrac{\mu}{\lambda+\mu})^{(n-x)} $
$ =\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x(1-\dfrac{\lambda}{\lambda+\mu})^{(n-x)} $
Such that $ x $ on condition $ z=n $ is binomial distributed $ n=n $ $ p=\dfrac{\lambda}{\lambda+\mu} $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal