Line 28: Line 28:
 
when <math>0<=x<=n</math><br>  
 
when <math>0<=x<=n</math><br>  
 
<math>P_{X|Z}(x|n) = P_{X,Y}(X=x,Y=n-x|Z=n)=\dfrac{e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{n-x}}{(n-x)!}}{e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^n}{n!}}</math><br>
 
<math>P_{X|Z}(x|n) = P_{X,Y}(X=x,Y=n-x|Z=n)=\dfrac{e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{n-x}}{(n-x)!}}{e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^n}{n!}}</math><br>
<math>=\dfrac{n!}{x!(n-x)!}\dot \dfrac{\lambda^x\dot \mu^{n-x}}{(\lambda+\mu)^n}=\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x\dot (\dfrac{\mu}{\lambda+\mu})^{(n-x)}</math>
+
<math>=\dfrac{n!}{x!(n-x)!}\dot</math><math> \dfrac{\lambda^x\dot \mu^{n-x}}{(\lambda+\mu)^n}=\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x\dot (\dfrac{\mu}{\lambda+\mu})^{(n-x)}</math>
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 23:46, 18 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 3


Solution

a)
Because $ X, Y $ are independent jointly distribute Poisson random variable.
$ P_{X+Y}(x,y)=P_X(x)\dot P_Y(y) $
Such that $ P_Z(z)=\sum_{x=0}^{z} e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!} =\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)} =e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!} $
b)
when $ x>n $ $ P_X(x)=0 $
when $ 0<=x<=n $
$ P_{X|Z}(x|n) = P_{X,Y}(X=x,Y=n-x|Z=n)=\dfrac{e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{n-x}}{(n-x)!}}{e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^n}{n!}} $
$ =\dfrac{n!}{x!(n-x)!}\dot $$ \dfrac{\lambda^x\dot \mu^{n-x}}{(\lambda+\mu)^n}=\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x\dot (\dfrac{\mu}{\lambda+\mu})^{(n-x)} $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett