Line 24: Line 24:
 
=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)}
 
=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)}
 
=e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!}</math><br>
 
=e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!}</math><br>
 +
b)<br>
 +
when <math>x>n</math> <math>P_X(x)=0</math><br>
 +
when <math>0<=x<=n</math> <math>P_{X|Z}(x|n)&=P_{X,Y}(X=x,Y=n-x|Z=n) \\&=\dfrac{1}{1}</math>
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 22:36, 18 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 3


Solution

a)
Because $ X, Y $ are independent jointly distribute Poisson random variable.
$ P_{X+Y}(x,y)=P_X(x)\dot P_Y(y) $
Such that $ P_Z(z)=\sum_{x=0}^{z} e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!} =\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)} =e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!} $
b)
when $ x>n $ $ P_X(x)=0 $
when $ 0<=x<=n $ $ P_{X|Z}(x|n)&=P_{X,Y}(X=x,Y=n-x|Z=n) \\&=\dfrac{1}{1} $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch