Line 28: Line 28:
  
 
b)<br>
 
b)<br>
<math>f_x(\omega)=\dfrac{\partialF_x(\omega)}{\partial\omega}</math><br>
+
<math>f_x(\omega)=\dfrac{\partial F_x(\omega)}{\partial\omega}</math><br>
 
<math>f_x(\omega)=
 
<math>f_x(\omega)=
 
\begin{cases}
 
\begin{cases}
Line 38: Line 38:
  
 
c)<br>
 
c)<br>
<math>X(\omega)\bar=\int_{-\infty}^{\infty} \omegaf_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega</math>
+
<math>X(\omega)\bar=\int_{-\infty}^{\infty} \omega f_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega</math>
  
 
----
 
----

Revision as of 23:15, 18 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 1


Solution

a)
$ F_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0<=\omega<h \\ 1 & \omega>=h \end{cases} $

b)
$ f_x(\omega)=\dfrac{\partial F_x(\omega)}{\partial\omega} $
$ f_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0<=\omega<h \\ 0 & \omega>=h \end{cases} $

c)
$ X(\omega)\bar=\int_{-\infty}^{\infty} \omega f_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn