Line 25: Line 25:
 
The KKT condition takes the form<br>
 
The KKT condition takes the form<br>
 
<math>
 
<math>
\begin{cases}
 
 
\nabla_xl(x,\mu)=
 
\nabla_xl(x,\mu)=
 
{begin{bmatrix}
 
{begin{bmatrix}
Line 33: Line 32:
 
\begin{bmatrix}
 
\begin{bmatrix}
 
0 \\ 0
 
0 \\ 0
\end{bmatrix}} \\
+
\end{bmatrix}}</math><br>
\mu_1(x_1+x_2-2)=0 \\
+
<math>\mu_1(x_1+x_2-2)=0</math><br>
\mu_2(x_1+2x_2-3)=0 \\
+
<math>\mu_2(x_1+2x_2-3)=0</math><br>
\mu_1>=0, \mu_2>=0
+
<math>\mu_1>=0</math>, <math>\mu_2>=0</math><br>
\end{cases}
+
</math><br>
+
 
<math> \Rightarrow
 
<math> \Rightarrow
 
\begin{cases}
 
\begin{cases}

Revision as of 22:46, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 5


Solution

The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ x_1+x_2-2<=0 $ and $ x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \nabla_xl(x,\mu)= {begin{bmatrix} 2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}} $
$ \mu_1(x_1+x_2-2)=0 $
$ \mu_2(x_1+2x_2-3)=0 $
$ \mu_1>=0 $, $ \mu_2>=0 $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva