Line 24: Line 24:
 
It is easy to see that <math>\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}</math> is n.d .<br>
 
It is easy to see that <math>\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}</math> is n.d .<br>
 
Such that function at <math>[2 -1]^T</math> is strictly locally concave.<br>
 
Such that function at <math>[2 -1]^T</math> is strictly locally concave.<br>
----bamr
+
----
 
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
 
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 22:59, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 3


Solution

Let $ t_1=x_1-2 $, $ t_2=x_2+1 $
so that $ g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2=0 $ would have some convex property
with $ f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1 $
$ D^2g(x)=\dfrac{1}{(t_1^2+t_2^2+3)^3}\begin{bmatrix} 6(t_1)^2-2(t_2)^3-6 & 8t_1t_2 \\ 8t_1t_2 & 6(t_2)^2-2(t_1)^3-6 \end{bmatrix}=\dfrac{1}{27}\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} $
It is easy to see that $ \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} $ is n.d .
Such that function at $ [2 -1]^T $ is strictly locally concave.


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett