m
m
Line 12: Line 12:
  
  
:<math> rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>.........
+
:<math> rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>.........<math> comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) = x(t) </math>
<math> comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) = x(t) . \mathrm{P_T} (t) </math>
+
  
 
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] </math>......................
 
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] </math>......................

Revision as of 06:07, 30 September 2010

2010_Fall_ECE_438_Boutin/ECE438Mid1FormulaSheet_Work_wrk

  • Fourier series of a continuous-time signal x(t) periodic with period T
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ DTFS $ $ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt} $ ...................... $ a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $


$ CTFT $$ \ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df $.....................$ \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $



$ rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) $.........$ comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) = x(t) $
$ rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] $......................
$ comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] $


Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010