m
Line 3: Line 3:
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
  
 +
:<math>CTFS  </math> <math>  x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}\;\;\;\;\;\;\;\;\;\;\;\;\;\;a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
  
*Fourier series of a continuous-time signal x(t) periodic with period T
+
:<math>CTFT</math><math>\ x(t) = \int_{-\infty}^{\infty} \chi(f)\ e^{j 2 \pi f t}\,df \;\;\;\;\;\;\;\;\;\;\;\;\;\ \chi(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt</math>
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
+
  
:<math>DTFS  </math> <math>  x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}\;\;\;\;\;\;\;\;\;\;\;\;\;\;</math>  <math>a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
 
  
  
:<math>CTFT</math><math>\ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df \;\;\;\;\;\;\;\;\;\;\;\;\;</math><math> \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt</math>
 
  
 +
:<math> rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) \;\;\;\;\;\;\;\;\;comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>
  
 +
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] \;\;\;\;\;\;\;\;\;\; comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] </math>
  
 +
<math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;for\;\;\alpha>0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;sinc(\theta)=sin(\pi\theta)/(\pi\theta) </math>
  
:<math> rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) \;\;\;\;\;\;\;\;\;</math><math> comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>
+
<math> \displaystyle e^{j\pi}=-1 \;\;\;\;\;\;\; \cos(t\theta) = (e^{j\theta}+e^{-j\theta})/2 \;\;\;\;\;\;\;\;\;\;\;\; sin(t\theta) = (e^{j\theta}-e^{-j\theta})/(2j) </math>
 
+
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] \;\;\;\;\;\;\;\;\;\;</math><math>  comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] </math>
+
 
+
<math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;for\;\;\alpha>0</math>
+
 
+
<math> \displaystyle e^{i\pi}=-1</math>
+

Revision as of 06:30, 30 September 2010

Work in progress for a formula sheet?

  • Fourier series of a continuous-time signal x(t) periodic with period T
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ CTFS $ $ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}\;\;\;\;\;\;\;\;\;\;\;\;\;\;a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $
$ CTFT $$ \ x(t) = \int_{-\infty}^{\infty} \chi(f)\ e^{j 2 \pi f t}\,df \;\;\;\;\;\;\;\;\;\;\;\;\;\ \chi(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $



$ rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) \;\;\;\;\;\;\;\;\;comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) $
$ rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] \;\;\;\;\;\;\;\;\;\; comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] $

$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;for\;\;\alpha>0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;sinc(\theta)=sin(\pi\theta)/(\pi\theta) $

$ \displaystyle e^{j\pi}=-1 \;\;\;\;\;\;\; \cos(t\theta) = (e^{j\theta}+e^{-j\theta})/2 \;\;\;\;\;\;\;\;\;\;\;\; sin(t\theta) = (e^{j\theta}-e^{-j\theta})/(2j) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood