(Proof(Counting Arguement))
m (your argument didn't match up with the statement proved)
Line 3: Line 3:
 
==Combinations==
 
==Combinations==
 
===Claim===
 
===Claim===
<math> {n \choose r} = {n \choose r-1} </math>
+
<math> {n \choose r} = {n \choose n-r} </math>
  
 
===Proof(Counting Arguement)===
 
===Proof(Counting Arguement)===
Line 13: Line 13:
  
 
<math>=</math>  # ways of CHOOSING 'n-r' things from n  
 
<math>=</math>  # ways of CHOOSING 'n-r' things from n  
<math> = {n \choose r-1} </math>.
+
<math> = {n \choose n-r} </math>.
 
QED
 
QED
  

Revision as of 17:08, 6 September 2008

Permutations

Combinations

Claim

$ {n \choose r} = {n \choose n-r} $

Proof(Counting Arguement)

$ {n \choose r} = $

$ = $ # ways to CHOOSE r things from n

$ = $ # ways of LEAVING 'n-r' things from n

$ = $ # ways of CHOOSING 'n-r' things from n $ = {n \choose n-r} $. QED

Binomial Coefficients

Pascal's Triangle

Binomial Theorem

Definition

$ (x+y)^n = \sum_{i=0}^n {n \choose k}x^i y^{n-i}, $

$ \text{where } {n \choose k} = \frac{n!}{n!(n-r)!}. $

Example

  • What is $ \sum_{i=0}^n {n \choose k} = {n \choose 0} + {n \choose 1} + .. + {n \choose n} ? $

Solution: Using the Binomial Theorem, let x = y = 1. Then, $ \sum_{i=0}^n {n \choose k} (1)^i (1)^{n-i} = \underline{\sum_{i=0}^n {n \choose k}} = (1+1)^n = \underline{2^n}. $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach