(Inclusion-Exclusion Principle (Basic))
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
[[Category:MA375]]
 +
[[Category:math]]
 +
[[Category:discrete math]]
 +
[[Category:lecture notes]]
 +
 +
=[[MA375]]: Lecture Notes=
 +
Fall 2008, Prof. Walther
 +
----
 
==Inclusion-Exclusion Principle (Basic)==
 
==Inclusion-Exclusion Principle (Basic)==
  
 
Let B and C be subsets of a given set A.  To count the number of elements in the union of B and C, we must evaluate the following:
 
Let B and C be subsets of a given set A.  To count the number of elements in the union of B and C, we must evaluate the following:
  
<math> |B \cup C| = |B| + |C| - |B \cap C| <math>
+
<math> |B \cup C| = |B| + |C| - |B \cap C| </math>
 +
 
 +
Subtracting <math>|B \cap C| </math> corrects the overcount.
 +
 
 +
In general,
 +
 
 +
<math>\displaystyle    |A_1 \cup A_2 \cup ... \cup A_n| =  </math>
 +
 
 +
<math>\displaystyle    |A_1| + |A_2| + ... + |A_n| </math>
 +
 
 +
<math>\displaystyle    - |A_1 \cap A_2| - |A_1 \cap A_3| - ... - |A_(n-1)\cap A_n| </math>
 +
 
 +
<math>\displaystyle    + |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + ... + |A_(n-2) \cap A_(n-1) \cap A_n| </math>
  
Subtracting <math>|B \cap C| <math> corrects the overcount.
+
<math>\displaystyle    + (-1)^(n+1)|A_1 \cap A_2 \cap A_3 \cap ... \cap A_n| </math>
 +
----
 +
[[Main_Page_MA375Fall2008walther|Back to MA375, Fall 2008, Prof. Walther]]

Latest revision as of 08:19, 20 May 2013


MA375: Lecture Notes

Fall 2008, Prof. Walther


Inclusion-Exclusion Principle (Basic)

Let B and C be subsets of a given set A. To count the number of elements in the union of B and C, we must evaluate the following:

$ |B \cup C| = |B| + |C| - |B \cap C| $

Subtracting $ |B \cap C| $ corrects the overcount.

In general,

$ \displaystyle |A_1 \cup A_2 \cup ... \cup A_n| = $

$ \displaystyle |A_1| + |A_2| + ... + |A_n| $

$ \displaystyle - |A_1 \cap A_2| - |A_1 \cap A_3| - ... - |A_(n-1)\cap A_n| $

$ \displaystyle + |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + ... + |A_(n-2) \cap A_(n-1) \cap A_n| $

$ \displaystyle + (-1)^(n+1)|A_1 \cap A_2 \cap A_3 \cap ... \cap A_n| $


Back to MA375, Fall 2008, Prof. Walther

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett