Revision as of 06:44, 21 April 2013 by Rhea (Talk | contribs)

Collective Table of Formulas

Discrete Fourier transforms (DFT)

click here for more formulas



Discrete Fourier Transform

Please help building this page!

Discrete Fourier Transform Pairs and Properties (info)
Definition Discrete Fourier Transform and its Inverse
Let x[n] be a periodic DT signal, with period N.
N-point Discrete Fourier Transform $ X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, $
Inverse Discrete Fourier Transform $ \,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \, $
Discrete Fourier Transform Pairs (info)
$ x[n] \ \text{ (period } N) $ $ \longrightarrow $ $ X_N[k] \ \ (N \text{ point DFT)} $
$ \ \sum_{k=-\infty}^\infty \delta[n+Nk] = \left\{ \begin{array}{ll} 1, & \text{ if } n=0, \pm N, \pm 2N , \ldots\\ 0, & \text{ else.} \end{array}\right. $ $ \ 1 \text{ (period } N) $
$ \ 1 \text{ (period } N) $ $ \ N\sum_{m=-\infty}^\infty \delta[k+Nm] = \left\{ \begin{array}{ll} N, & \text{ if } n=0, \pm N, \pm 2N , \ldots\\ 0, & \text{ else.} \end{array}\right. $
$ \ e^{j2\pi k_0 n} $ $ \ N\delta[((k - k_0))_N] $
$ \ \cos(\frac{2\pi}{N}k_0n) $ $ \ \frac{N}{2}(\delta[((k - k_0))_N] + \delta[((k+k_0))_N]) $
Discrete Fourier Transform Properties
$ x[n] \ $ $ \longrightarrow $ $ X[k] \ $
Linearity $ ax[n]+by[n] \ $ $ aX[k]+bY[k] \ $
Circular Shift $ x[((n-m))_N] \ $ $ X[k]e^{(-j\frac{2 \pi}{N}km)} \ $
Duality $ X[n] \ $ $ NX[((-k))_N] \ $
Multiplication $ x[n]y[n] \ $ $ \frac{1}{N} X[k]\circledast Y[k], \ \circledast \text{ denotes the circular convolution} $
Convolution $ x(t) \circledast y(t) \ $ $ X[k]Y[k] \ $
$ \ x^*[n] $ $ \ X^*[((-k))_N] $
$ \ x^*[((-n))_N] $ $ \ X^*[k] $
$ \ \Re\{x[n]\} $ $ \ X_{ep}[k] = \frac{1}{2}\{X[((k))_N] + X^*[((-k))_N]\} $
$ \ j\Im\{x[n]\} $ $ \ X_{op}[k] = \frac{1}{2}\{X[((k))_N] - X^*[((-k))_N]\} $
$ \ x_{ep}[n] = \frac{1}{2}\{x[n] + x^*[((-n))_N]\} $ $ \ \Re\{X[k]\} $
$ \ x_{op}[n] = \frac{1}{2}\{x[n] - x^*[((-n))_N]\} $ $ \ j\Im\{X[k]\} $
Other Discrete Fourier Transform Properties
Parseval's Theorem $ \sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^2 $

Go to Relevant Course Page: ECE 438

Go to Relevant Course Page: ECE 538

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett