Revision as of 16:48, 10 February 2013 by Ksteckbe (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

EXTRA CREDIT

1. Linear and Non Linear

Linear example $ y[n] = 54x[n] $, $ h[n] = 62x[n] $, $ y[n] + h[n] = 54x[n] + 62x[n] $

Non Linear example $ y(t) =x^3(t) $, $ h(t) = x^3(t) $, $ y(t) + h(t) = (x(t)+x(t))^2 $ =\= $ x^2(t) +x^2(t) $

Causal and Non Causal

Causal example $ y[n]=70x[n-1] $ Non Causal example $ y[n]=76x[n+1] $

Memory and Memoryless

Memory example $ y[n]=x[n]+x[n-1] $ Memoryless example $ y[n]=36x[n] $

Invertible and noninvertible

Invertible example $ y(t)=5x(t) $ Nonivertible example $ y(t)=x^4(t) $

Stable and Nonstable

Stable example $ y(t)=sin(3t) $ Nonstable example $ y(t)=4e^3x(t) $

Time variant and Time invariant

Time variant example $ y(t)=3tx(t) $ Time Invariant example $ y(t)=3x(t) $

2.

Part 1:Convol 1.jpg

Part 2:Convol 2.jpg

Part 3:Convol 3.jpg

Part 4:Convol 4.jpg


I apologize for my terrible quality pictures.

3.

What is the fundamental period of the following equation.

$ y(t)=4sin(3t+pi/6) $

Its fundamental period is $ = 2pi/3 $


Comments and Questions...

Back to first bonus point opportunity, ECE301 Spring 2013

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett