Revision as of 17:53, 7 February 2011 by Cmcmican (Talk | contribs)

Practice Question on Computing the Fourier Series coefficients of a discrete-time (sampled) cosine wave

Obtain the Fourier series coefficients of the DT signal

$ x[n] = \cos \left(3\pi n + \frac{\pi}{2} \right) . \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

for $ cos(n) $, the coefficients are $ a_1=\frac{1}{2},a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for }k\ne 1,-1 $

Time shift property: $ x(n-n_0) \to e^{-jkw_0n_0}a_k $

Thus with $ w_0=3\pi\, $ and $ n_0=\frac{-\pi}{2} $,

$ a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2},a_{-1}=\frac{e^{-j 3 \pi \frac{\pi}{2}}}{2}, a_k=0 \mbox{ for }k\ne 1,-1 $

Is that right? I'm not sure about the time shift property.

--Cmcmican 21:53, 7 February 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood