Revision as of 07:14, 1 December 2010 by Nelder (Talk | contribs)

Example. Mean of i.i.d. random variables

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n} $ be $ M $ jointly distributed i.i.d. random variables with mean $ \mu $ and variance $ \sigma^{2} $ . Let $ \mathbf{Y}_{M}=\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n} $ .

(a) Find the variance of $ \mathbf{Y}_{M} $ .

$ Var\left[\mathbf{Y}_{M}\right]=E\left[\mathbf{Y}_{M}^{2}\right]-\left(E\left[\mathbf{Y}_{M}\right]\right)^{2}. $

$ E\left[\mathbf{Y}_{M}\right]=E\left[\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n}\right]=\frac{1}{M}\sum_{n=0}^{M}E\left[\mathbf{X}_{n}\right]=\frac{1}{M}\cdot M\cdot\mu=\mu. $

$ E\left[\mathbf{Y}_{M}^{2}\right]=E\left[\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}\mathbf{X}_{m}\mathbf{X}_{n}\right]=\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right]. $

Now $ E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right]=\begin{cases} \begin{array}{ll} E\left[\mathbf{X}_{m}^{2}\right] ,m=n\\ E\left[\mathbf{X}_{m}\right]E\left[\mathbf{X}_{n}\right] ,m\neq n \end{array}\end{cases} $ because when $ m\neq n $ , $ \mathbf{X}_{m} $ and $ \mathbf{X}_{n} $ are independent $ \Rightarrow \mathbf{X}_{m} $ and $ \mathbf{X}_{n} $ are uncorrelated.

$ E\left[\mathbf{Y}_{M}^{2}\right]=\frac{1}{M^{2}}\left[M\left(\mu^{2}+\sigma^{2}\right)+M\left(M-1\right)\mu^{2}\right]=\frac{\left(\mu^{2}+\sigma^{2}\right)+\left(M-1\right)\mu^{2}}{M}=\frac{M\mu^{2}+\sigma^{2}}{M}. $

$ Var\left[\mathbf{Y}_{M}\right]=\frac{M\mu^{2}+\sigma^{2}-M\mu^{2}}{M}=\frac{\sigma^{2}}{M}. $

(b) Now assume that the $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n} $ are identically distributed with with mean $ \mu $ and variance $ \sigma^{2} $ , but they are only correlated rather than independent. Find the variance of $ \mathbf{Y}_{M} $ .

Again, $ Var\left[\mathbf{Y}_{M}\right]=\frac{\sigma^{2}}{M} $ , because only uncorrelatedness was used in part (a).


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett