Revision as of 15:26, 19 September 2010 by Han83 (Talk | contribs)


Solution to Q2 of Week 5 Quiz Pool


From the first question, we knew that

$ -a^{n}u[-n-1] = \mathcal{Z}^{-1}\bigg\{\frac{1}{1-az^{-1}}\bigg\} \text{ where } |z|<|a|. \,\! $

And the time-shifting property of Z-transform is defined as

$ x[n-k] = \mathcal{Z}^{-1}\bigg\{z^{-k}X(z)\bigg\} \text{ when } x[n] = \mathcal{Z}^{-1}\bigg\{X(z)\bigg\}\,\! $

Therefore, if we use the time-shifting property of Z-transform, then

$ -a^{n-3}u[-(n-3)-1] = \mathcal{Z}^{-1}\bigg\{\frac{z^{-3}}{1-az^{-1}}\bigg\} \text{ where } |z|<|a|. \,\! $

Combined with the result from the linearity of Z-transform, then

$ \begin{align} \mathcal{Z}^{-1}\bigg\{\frac{2z^{-3}}{1-az^{-1}}\bigg\} \text{ for } |z|<|a| &= -2a^{n-3}u[-(n-3)-1], \\ &= -2a^{n-3}u[-n+2] \end{align} \,\! $


I saw many students made a mistake about this kind of question, such as

$ -a^{n}u[-(n-3)-1] = \mathcal{Z}^{-1}\bigg\{\frac{z^{-3}}{1-az^{-1}}\bigg\} \text{ where } |z|<|a|. \;\;\; \text{This in not correct!!} \,\! $

which the time-shifting is applied only to the unit step and not to the power of $ a $. Thus, you should be very careful when you use the time-shifting property. You have to apply time-shifting to all $ n $, when you find the inverse Z-transform. -Jaemin


Back to Lab Week 5 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett