Revision as of 10:50, 10 March 2008 by Kng (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This page and its subtopics discusses about Support Vector Machines

Lectures discussing Support Vector Machines :[Lecture11], [Lecture12] and [Lecture13]

  • Other related sites:

`A Tutorial on Support Vector Machines for Pattern Recognition <http://citeseer.ist.psu.edu/cache/papers/cs/26235/http:zSzzSzwww.isi.uu.nlzSzMeetingszSz..zSzTGVzSzfinal1.pdf/burges98tutorial.pdf>`_

`Support Vector Machines for 3D Object Recognition <http://ieeexplore.ieee.org/iel4/34/15030/00683777.pdf?isnumber=15030&prod=JNL&arnumber=683777&arSt=637&ared=646&arAuthor=Pontil%2C+M.%3B+Verri%2C+A.>`_

Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications. <http://www.svms.org/software.html>

Purdue link: http://www2.lib.purdue.edu:2483/10.1145/130385.130401

ACM link: http://doi.acm.org/10.1145/130385.130401

  • Journal References

M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.

Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang