Revision as of 13:06, 3 December 2015 by Yan115 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


\begin{align*} P(X=x|X+Y=n) &=\frac{P(X=x, X+Y=n)}{P(X+Y=n)}\\ &=\frac{P(X=x, Y=n-x)}{P(X+Y=n)} \end{align*} \begin{align*} P(X=x, Y=n-x) &=P(X=x)P(Y=n-x)\\ &=\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!}\\ &=\frac{e^{-(\lambda_1+\lambda_2)}}{x!} \left( \begin{array}{c} n\\x \end{array} \right) \lambda_1^x\lambda_2^{n-x} \end{align*} \begin{align*} {P(X+Y=n)} &={\sum_{k=0}^{k=n}P(X=k,Y=n-k)}\\ &={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}\\ &=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^{k=n} \left( \begin{array}{c} n\\k \end{array} \right) \lambda_1^k\lambda_2^{n-k} &=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n \end{align*} So \begin{align*} P(X=x|X+Y=n) &= \left( \begin{array}{c} n\\k \end{array} \right) (\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x} \end{align*}



Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal