Revision as of 16:57, 30 September 2010 by Ewoeckel (Talk | contribs)

Discussion related to midterm 1

Ask your questions here!

Possible formula sheet for exam 1 Add things or suggest items? Side note: the formula sheet on the practice exam seems to be suitable. Will we see something similar?


Midterm 1 Spring 2009 Question 3

a) $ H(w) = \frac{1}{3}[1 + e^{-jw} + e^{-j2w}] $

b) $ G(w) = rect(w\frac{3}{\pi}) $

$ A(w) = \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{w-2\pi k}{6}) $

$ B(w) = A(w)H(w) = \frac{1}{3}[1 + e^{-jw} + e^{-j2w}] \cdot \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{w-2\pi k}{6}) $

$ C(w) = B(6w) = \frac{1}{3}[1 + e^{-j(6w)} + e^{-j2(6w)}] \cdot \frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{6w-2\pi k}{6}) $

$ F(w) = C(w)G(w) = \frac{1}{3}[1 + e^{-j(6w)} + e^{-j2(6w)}] \cdot\frac{1}{6} \Sigma_{k=-\infty}^{\infty} rect(\frac{3}{\pi}\cdot\frac{6w-2\pi k}{6}) \cdot rect(w\frac{3}{\pi}) $

Is this correct?


Does anyone know what the trick is for doing 1A and 1c? I know there is a trick because doing integration by parts is just too damn long.

Yes, there is a function that breaks down the system. "sin(x)cos(y)=(sin(x+y)+sin(x-y))/2". You can then simply take the system as 2 separate sin functions.


Back to ECE438 Fall 2010 Prof. Boutin

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics