Revision as of 10:19, 3 October 2008 by Jpfister (Talk)

Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega $

$ X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett