Revision as of 20:50, 17 September 2008 by Jkubasci (Talk)

Some defines:

$ \,m=\left[ \begin{array}{ccc} x & y & z \end{array} \right] \, $ is the message

$ \,A=\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] \, $ is the encryption matrix

$ \,e=\left[ \begin{array}{ccc} s & t & u \end{array} \right] \, $ is the encrypted message

How can Bob Decrypt the Message?

We have the equation

$ \,e=mA\, $

which is how the message is being encrypted. If we multiply both sides by the inverse of $ \,A\, $, we get

$ \,eA^{-1}=mAA^{-1}=mI=m\, $

Therefore, we can get the original message back if we multiply the encrypted message by $ \,A^{-1}\, $, given that the inverse of $ \,A\, $ exists.

Can Eve Decrypt the Message Without Finding the Inverse of A?

What is the Decrypted Message?

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang