keywords: energy, power, signal
Signal Metrics Definitions and Formulas
| Metrics for Continuous-time Signals | |
|---|---|
| (info) CT signal energy | $ E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt $ |
| (info) CT signal (average) power | $ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt $ |
| CT signal area | $ A_x = \int_{-\infty}^{\infty} x (t) \, dt $ |
| Average value of a CT signal | $ \bar{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x (t) \, dt $ |
| CT signal magnitude | $ M_x = \max_{-\infty<t<\infty} \left | x (t) \right | $ |
| Metrics for Discrete-time Signals | |
| DT signal energy | $ E_\infty=\sum_{n=-\infty}^\infty | x[n] |^2 $ |
| DT signal average power | $ P_\infty = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left | x [n] \right |^2 \, $ |
| DT signal area | $ A_x = \sum_{n=-\infty}^{\infty} x [n] \, $ |
| Average value of a DT signal | $ \bar{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x [n] \, $ |
| DT signal magnitude | $ M_x = \max_{-\infty<t<\infty} \left | x [n] \right | $ |
