Linear System
A system is called "Linear" if for any constants a,b and for any inputs x1(t),x2(t),(x1[n],x2[n]) yielding output y1(t),y2(t),respectively, the respond to a*x1(t)+b*x2(t) is a*y1(t)+b*y2(t)
Example
A)LINEAR
Let: x1(t)=t, x2(t)=2t; System: y(t)=3*x(t) Thus, y1(t)=3t,y2(t)=6t So say a,b are any non-zero constant a*x1(t)->system->3at + --->Output= 3at+6bt -----(1) b*x2(t)->system->6bt
a*x1(t)+b*x2(t)=at+2bt->system->Output=3*(at+2bt)= 3at+6bt ----------(2)
(1)=(2),so linear.
B)NON-LINEAR
Let: x1(t)=t, x2(t)=2t; System: y(t)=x(t)^2 Thus, y1(t)=t^2,y2(t)=4t^2
So say a,b are any non-zero constant a*x1(t)->system->a*t^2 + --->Output= a*t^2+4b*t^2 -----(3) b*x2(t)->system->b*4t^2
a*x1(t)+b*x2(t)=at+2bt->system->Output=(at+2bt)^2 ----------(4)
(3)!=(4),so non-linear.