Revision as of 11:53, 30 November 2010 by Nelder (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

3.3 The Power Spectrum

Definition. Power spectrum

The power spectrum or power spectral density (PSD) of a W.S.S. random process $ \mathbf{X}\left(t\right) $ , real or complex, is the Fourier transform of the autocorrelation function:

$ S_{\mathbf{XX}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(\tau\right)e^{-i\omega\tau}d\tau $

where $ R_{\mathbf{XX}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{X}^{*}\left(t\right)\right]. $

Note

1. Because $ R_{\mathbf{XX}}\left(-\tau\right)=R_{\mathbf{XX}}^{*}\left(\tau\right) $ , $ S_{\mathbf{XX}}\left(\omega\right) $ is a real function.

2. $ R_{\mathbf{XX}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XX}}\left(\omega\right)e^{i\omega\tau}d\omega $ . (Fourier inversion formula)

3. In order to consider $ S_{\mathbf{XX}}\left(\omega\right) $ , we assume $ \mathbf{X}\left(t\right) $ is at least W.S.S.

4. The PSD of $ \mathbf{X}\left(t\right) $ is a non-negative valued function of $ \omega $ . $ (\because R_{\mathbf{XX}}\left(\tau\right) $ is non-negative definite.)

Note

The PSD gives the average distribution of power in frequency for a random process.

Key result

If $ \mathbf{X}\left(t\right) $ is a W.S.S. random process and it is the input to a stable L.T.I. system with impulse response $ h\left(t\right) $ , then the output $ \mathbf{Y}\left(t\right) $ has PSD

$ S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2} $

where $ H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt $ .

Definition. Cross-power spectral density

The cross-power spectral density of jointly-distributed W.S.S. random processes $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ is the Fourier transform of their cross-correlation:

$ S_{\mathbf{XY}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XY}}\left(\tau\right)e^{-i\omega\tau}d\tau $

where $ R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{Y}^{*}\left(t\right)\right] $ .

Note

The cross-power spectral density need not be real or non-negative.

Note

$ R_{\mathbf{XY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XY}}\left(\omega\right)e^{i\omega\tau}d\omega. $


Back to ECE600

Back to General Concepts of Stochastic Processes

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang