Revision as of 17:34, 30 March 2008 by Arora6 (Talk)

Svm Old Kiwi.jpg The class of the data is written as the second co-ordinate. $ {\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}=0 $

    • 3 inequalities**:

$ 1.w+b\leq-1 $

$ 2.w+b\leq+1 $

$ 3.w+b\leq+1 $

$ J=\frac{{w}^{2}}{2}-{\alpha }_{1}\left(-w-b-1 \right)-{\alpha }_{2}(2w+b-1)-{\alpha }_{3}(3w+b-1) $

Formulating the Dual Problem:


$ Q(\alpha )= {\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}-[0.5{{\alpha }_{1}}^{2}+2{{\alpha }_{2}}^{2}+4.5{{\alpha }_{3}}^{2}-2{\alpha }_{1}{\alpha }_{2}-3{\alpha }_{1}{\alpha }_{3}-6{\alpha }_{2}{\alpha }_{3}] $


Subject to constraints

$ {\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}=0 $ and

$ {\alpha }_{1}\geq 0; {\alpha }_{2}\geq 0;{\alpha }_{3}\geq 0 $

Differentiating partially with respect to $ {\alpha }_{1},{\alpha }_{2}, {\alpha }_{3} $


$ {\alpha }_{1}+2{\alpha }_{2}+3{\alpha }_{3}=0 $

$ 1+2{\alpha }_{1}-4{\alpha }_{2}-6{\alpha }_{3}=0 $

$ 1+3{\alpha }_{1}-6{\alpha }_{2}-9{\alpha }_{3}=0 $

On Solving, we get

$ {\alpha }_{1}=2 $

$ {\alpha }_{2}=2 $

$ {\alpha }_{3}=0 $

This yields w = 2, b = -3. Hence the solution of decision boundary is: 2x - 3 = 0. or x = 1.5 This is shown as the dash line in above figure.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang