Revision as of 07:33, 18 January 2013 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Comparing the Fourier transform and the Laplace transform of $ x(t) = e^{-at}u(t) $

Let the signal $ x(t) = e^{-at}u(t) $. The Fourier transform $ X(\omega) $ converges for $ a > 0 $ and is given by:

$ X(\omega) = \int_{-\infty}^{\infty} e^{-at}u(t)e^{-j\omega t} \, dt = \int_{0}^{\infty} e^{-at}e^{-j\omega t} \, dt = \frac{1}{j\omega + a}, a > 0 $ (1)

the Laplace transform is:


$ X(s) = \int_{-\infty}^{\infty} e^{-at}u(t)e^{-st} \, dt = \int_{0}^{\infty} e^{-(s + a)t} \, dt $

with $ s = \sigma + j\omega $

$ X(\sigma + j\omega) = \int_{0}^{\infty} e^{-(\sigma + a)t} e^{-j\omega t} \, dt $

By comparing with (1) above, this last equation is the Fourier transform of $ e^{-(\sigma + a)t}u(t) $

$ \Rightarrow X(\sigma + j\omega) = \frac{1}{(\sigma + a) + j\omega}, \sigma + a > 0 $

since $ ^{s = \sigma + j\omega} $ and $ \sigma = \mathbb{R} (s) $

$ X(s) = frac{1}{s + a}, \mathbb{R} (S) > -a $

that is,

$ e^{-at}u(t) \xrightarrow{\mathcal{L}} \frac{1}{s + a}, \mathbb{R}(s) > -a $

for example, for $ a = 0, x(t) $ is the unit step with Laplace transform

$ X(s) = \frac{1}{s}, \mathbb{R} (s) > 0 $


Back to HW10

Back to ECE301 Fall 2008, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang