Line 21: Line 21:
 
| <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math>  
 
| <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math>  
 
| <math>2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ </math>  
 
| <math>2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ </math>  
 +
|-
  
 
| <math>\sum^{\infty}_{n=-\infty} \delta(t-nT)  \ </math>  
 
| <math>\sum^{\infty}_{n=-\infty} \delta(t-nT)  \ </math>  

Revision as of 16:35, 14 November 2018

CTFT of periodic signals and some properties with proofs

Function CTFT
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t} $ $ 2\pi\delta(\omega - \omega_0) $
$ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ $ 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ $
$ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ $ \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) $
Name $ x(t) \longrightarrow \ $ $ \mathcal{X}(\omega) $
Linearity $ ax(t) + by(t) \ $ $ a \mathcal{X}(\omega) + b \mathcal{Y} (\omega) $
Time Shifting $ x(t-t_0) \ $ $ e^{-j\omega t_0}X(\omega) $
Frequency Shifting $ e^{j\omega_0 t}x(t) $ $ \mathcal{X} (\omega - \omega_0) $
Conjugation $ x^{*}(t) \ $ $ \mathcal{X}^{*} (-\omega) $
Scaling $ x(at) \ $ $ \frac{1}{|a|} \mathcal{X} (\frac{\omega}{a}) $
Multiplication $ x(t)y(t) \ $ $ \frac{1}{2\pi} \mathcal{X}(\omega)*\mathcal{Y}(\omega) $
Convolution $ x(t)*y(t) \ $ $ \mathcal{X}(\omega)\mathcal{Y}(\omega) \! $
Differentiation $ tx(t) \ $ $ j\frac{d}{d\omega} \mathcal{X} (\omega) $
Parseval's Relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = $ $ \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett