Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
For the signal: | For the signal: | ||
Line 8: | Line 18: | ||
<math> x(t) = 1 + \frac{3}{2}e^{j3\pi t} - 2e^{-5\pi t}</math> | <math> x(t) = 1 + \frac{3}{2}e^{j3\pi t} - 2e^{-5\pi t}</math> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 12:50, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
For the signal:
$ X(\omega)= 2\pi \delta(\omega) + 3\pi \delta(\omega - 3\pi) - 4\pi \delta(\omega + 5\pi) $
$ x(t) = \frac{1}{2\pi} \int_{-\infty}^\infty (2\pi \delta(\omega) + 3\pi \delta(\omega - 3\pi) - 4\pi \delta(\omega + 5\pi)) e^{j\omega t} \mathrm{d}\omega $
$ = \int_{-\infty}^\infty ( \delta(\omega) + \frac{3}{2} \delta(\omega - 3\pi) - 2 \delta(\omega + 5\pi)) e^{j\omega t} \mathrm{d}\omega $
$ x(t) = 1 + \frac{3}{2}e^{j3\pi t} - 2e^{-5\pi t} $