Line 19: | Line 19: | ||
I have a question on the Kirchoff law problem, section 7.3 problem 18. On the loop portion of the defining equations, relative to a clockwise direction, I find the equation of the right loop to be -12 I2 + 8 I3 = -24. Is this correct to assume the I2 term is negative due to the counterclockwise flow of I2, as with the voltage term? | I have a question on the Kirchoff law problem, section 7.3 problem 18. On the loop portion of the defining equations, relative to a clockwise direction, I find the equation of the right loop to be -12 I2 + 8 I3 = -24. Is this correct to assume the I2 term is negative due to the counterclockwise flow of I2, as with the voltage term? | ||
+ | |||
+ | That equation is the same thing I got, I just took a different direction for my KVL around the loop (e.g. <math>12 I_2 - 8 I_3 = 24</math>). However, I don't fully understand what your question is. --[[User:Rrusson|Rrusson]] 18:48, 25 August 2013 (UTC) | ||
---- | ---- | ||
[[2013_Fall_MA_527_Bell|Back to MA527, Fall 2013]] | [[2013_Fall_MA_527_Bell|Back to MA527, Fall 2013]] |
Revision as of 14:48, 25 August 2013
Homework 1 collaboration area
Feel free to toss around ideas here. Feel free to form teams to toss around ideas. Feel free to create your own workspace for your own team. --Steve Bell
Here is my favorite formula:
$ f(a)=\frac{1}{2\pi i}\int_\gamma \frac{f(z)}{z-a}\ dz. $
This is a test formula:
$ A \vec x= \vec b $ - Eun Young
I have a question on the Kirchoff law problem, section 7.3 problem 18. On the loop portion of the defining equations, relative to a clockwise direction, I find the equation of the right loop to be -12 I2 + 8 I3 = -24. Is this correct to assume the I2 term is negative due to the counterclockwise flow of I2, as with the voltage term?
That equation is the same thing I got, I just took a different direction for my KVL around the loop (e.g. $ 12 I_2 - 8 I_3 = 24 $). However, I don't fully understand what your question is. --Rrusson 18:48, 25 August 2013 (UTC)