m
Line 1: Line 1:
Variety:
+
=Varieties=
 +
from [[Lecture_1_-_Introduction_OldKiwi|Lecture 1, ECE662, Spring 2010]]
 +
----
 +
 
 
A variety is a mathematical construct used to define [[Decision Surfaces_OldKiwi]].  Intuitively, it is the zero set of polynomials that tells 'what kind of set can you get?' in a particular case.
 
A variety is a mathematical construct used to define [[Decision Surfaces_OldKiwi]].  Intuitively, it is the zero set of polynomials that tells 'what kind of set can you get?' in a particular case.
  
Line 10: Line 13:
  
 
<math>\mathbf{V} (\mathbf{P})=\left\{ \mathbf{x}\in \Re ^n : p(\mathbf{x})=0 \  for \  all \  p \in \mathbf{P} \right\}</math>
 
<math>\mathbf{V} (\mathbf{P})=\left\{ \mathbf{x}\in \Re ^n : p(\mathbf{x})=0 \  for \  all \  p \in \mathbf{P} \right\}</math>
 +
----
 +
[[Lecture_1_-_Introduction_OldKiwi|Back to Lecture 1, ECE662, Spring 2010]]

Revision as of 10:45, 10 June 2013

Varieties

from Lecture 1, ECE662, Spring 2010


A variety is a mathematical construct used to define Decision Surfaces_OldKiwi. Intuitively, it is the zero set of polynomials that tells 'what kind of set can you get?' in a particular case.

Definition: Let

$ \mathbf{x}\in {\Re}^n $ and $ \mathbf{P} $ be set of polynomials: $ \Re ^n \rightarrow \Re $.

Then variety is given by

$ \mathbf{V} (\mathbf{P})=\left\{ \mathbf{x}\in \Re ^n : p(\mathbf{x})=0 \ for \ all \ p \in \mathbf{P} \right\} $


Back to Lecture 1, ECE662, Spring 2010

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett