Line 8: Line 8:
  
 
<p>
 
<p>
<math>\langle A, R \rangle</math> is an ordered class iff
+
<math>\langle A, R \rangle</math> is an totally ordered class iff
 
<ol>
 
<ol>
 
<li><math>R\subseteq A\times A</math></li>
 
<li><math>R\subseteq A\times A</math></li>
 
<li>(irreflexivity) <math>\forall x \in A \langle x,x \rangle \notin R</math></li>
 
<li>(irreflexivity) <math>\forall x \in A \langle x,x \rangle \notin R</math></li>
 
<li>(transitivity) <math>\forall x,y,z \in A \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R</math></li>
 
<li>(transitivity) <math>\forall x,y,z \in A \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R</math></li>
<li>(trichotomy) <math>\forall x,y \in A \langle x,y \rangle \in R \wee \langle y,x \rangle \in R \wee x=y</math></li>
+
<li>(trichotomy) <math>\forall x,y \in A \langle x,y \rangle \in R \vee \langle y,x \rangle \in R \vee x=y</math></li>
 
</ol>
 
</ol>
 
</p>
 
</p>

Revision as of 08:58, 1 June 2013

Equivalences of Well-ordered Relation

Definitions

$ \langle A, R \rangle $ is an totally ordered class iff

  1. $ R\subseteq A\times A $
  2. (irreflexivity) $ \forall x \in A \langle x,x \rangle \notin R $
  3. (transitivity) $ \forall x,y,z \in A \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R $
  4. (trichotomy) $ \forall x,y \in A \langle x,y \rangle \in R \vee \langle y,x \rangle \in R \vee x=y $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn