Line 43: | Line 43: | ||
<math>X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} = \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n} </math>. | <math>X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} = \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n} </math>. | ||
− | <math>X_k = \sum_{n=0}^{3} e^{-\pi/2} e^{-j 2 \pi \frac{k}{4} n} </math>. | + | <math>X_k = \sum_{n=0}^{3} e^{-j \pi n/2} e^{-j 2 \pi \frac{k}{4} n} </math>. |
Revision as of 06:19, 3 October 2011
Practice Problem
Compute the discrete Fourier transform of the discrete-time signal
$ x[n]= (-j)^n $.
How does your answer related to the Fourier series coefficients of x[n]?
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
$ X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} = \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n} = 1 + (-j \cdot e^{-j \frac{\pi k}{2}} ) + (-1 \cdot e^{-j \frac{2\pi k}{2}} ) + (j \cdot e^{-j \frac{3\pi k}{2}} ) $
$ = 1 + (-j) \cdot (-j)^k + (-1) \cdot (1)^k + (j) \cdot (j)^k = (-j)^{k+1} + (j)^{k+1} = 0, -2, 0, 2 $
, when k = 0, 1 ,2 ,3. And it is periodic with K = 4.
Ouch... This is not right. since $ x[n] = (-j)^n = e^{((-j\pi/2) \cdot n )} $
it's fft should be only an impulse. And Matlab told me:
x = [1 -j -1 j];
fft(x)
ans =
0 0 0 4
I'll fix it tomorrow. Or someone can point out my error?
- instructor's comment: There is a much easier way to answer this question. Take a close look at the formula for the DFT and try to use a "comparison" approach. -pm
Answer 2
$ X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} = \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n} $.
$ X_k = \sum_{n=0}^{3} e^{-j \pi n/2} e^{-j 2 \pi \frac{k}{4} n} $.