Line 61: Line 61:
 
<math>X(z) = Z\left(x[n]\right) =Z\left(\delta[n-1]+2\delta[n-2]\right) =  Z\left(\delta[n-1]\right)+Z\left(2\delta[n-2]\right) = z^{-1}+2z^{-2}, ROC = C/[0]
 
<math>X(z) = Z\left(x[n]\right) =Z\left(\delta[n-1]+2\delta[n-2]\right) =  Z\left(\delta[n-1]\right)+Z\left(2\delta[n-2]\right) = z^{-1}+2z^{-2}, ROC = C/[0]
 
</math>
 
</math>
 +
 +
===Answer 4===
 +
<math>X[n] = nu[n] - nu[n-3]</math>
 +
 +
<math> X(z) = \sum_{n=0}^{2}n z^{-n}</math>
 +
<math>      = 0 + z^-1 + 2*Z^-2
 +
ROC z not equal to 1
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 11:42, 19 September 2011

Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n u[n]-n u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Begin with the definition of a Z-Transform.

$ X(z) = \sum_{n=-\infty}^{\infty}(n u[n]-n u[n-3])z^{-n} $

Simplify a little. (pull out the n and realize $ u[n]-u[n-3] $ is only non-zero for 0, 1, and 2.)

$ X(z) = \sum_{n=0}^{2}n z^{-n} $

Then we have a simple case of evaluating for 3 points.

$ \begin{align} X(z) &= 0 z^{-0} + 1 z^{-1} + 2 z^{-2} \\ &= \frac{z+2}{z^2} \end{align} $

TA's comments: What about the ROC?

Answer 2

$ Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n} $

when n=0,1,2, x[n] is n; otherwise x[n]=0. So:

$ x(z)=0z^{-0}+1z^{-1}+2z^{-2}=\frac{1}{z}+\frac{2}{z^2} $ with ROC=all finite complex number except 0.

test for infinity:

$ X(\frac{1}{z})=z+z^2 $

when z=0,$ X(\frac{1}{z}) $converges

X(z) converges at $ z=\infty $

so ROC of X(z) is all complex number except 0.


Answer 3

First the axiom need to be prove:

$ Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] $

Observe the original function

$ x\left[ n \right]= n u[n]-n u[n-3] = n(u[n] - u[n-3]) = n(\delta[n] + \delta[n-1] + \delta[n-2]) = 0\delta[n] + 1\delta[n-1] + 2\delta[n-2] $

so by two axioms proved above, with the linearity property,

$ X(z) = Z\left(x[n]\right) =Z\left(\delta[n-1]+2\delta[n-2]\right) = Z\left(\delta[n-1]\right)+Z\left(2\delta[n-2]\right) = z^{-1}+2z^{-2}, ROC = C/[0] $

Answer 4

$ X[n] = nu[n] - nu[n-3] $

$ X(z) = \sum_{n=0}^{2}n z^{-n} $ $ = 0 + z^-1 + 2*Z^-2 ROC z not equal to 1 ---- [[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]] $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang